
Middleware for Robotics in Assisted living: A case study

Tizar Rizano

Luca Abeni

Luigi Palopoli

DISI - Università di Trento

Via Sommarive 5 38123 - Trento

tizar.rizano@disi.unitn.it, luca.abeni@unitn.it, luigi.palopoli@unitn.it

Abstract

In the FP7 E.C. DALi project, we pursue a mobility aid device – the cWalker – that supports navigation

in crowded and unstructured spaces by acquiring sensory information by anticipating the intent of human

agents and by deciding the path that minimises the risk of accidents.

To achieve its ambitious goals the cWalker relies on a multi-disciplinary effort tapping different areas of

expertise. The resulting complexity of the system engineering motivates the use of a middleware combining

a usable and intuitive API with acceptable latencies to permit its use in a system with challenging real–

time constraints. In this paper, we report a performance evaluation of three interesting technological

middleware solutions available off-the shelf that could potentially meet the demanding requirements of

the cWalker and, more in general, of a new generations of robotic applications.

1 Introduction

The recent developments in sensing and battery tech-
nologies and in embedded computing devices are cre-
ating the premises for the development of low cost
robotic applications for a consumer market. The
ever-increasing presence of robot vacuum cleaners in
our homes, of robotic toys amusing our children, of
robotic drones shooting impressive pictures from sur-
prising points of view are witnesses of a clear market
trend. At the forefront of this movement are robots
created to assist older adults or people with different
disabilities. One of the basic needs that can effec-
tively be addressed by assistive robots is personal
mobility. In this class of application we find the the
cognitive walker (cWalker), designed to assist adults
with non-severe cognitive abilities in the navigation
of complex and crowded environments (e.g., an air-
port or a mall), which challenge the sense of direction
and generate anxiety. This is a paradigm of a much
wider class of complex robotic applications that are
called to operate in real–time with the environment
and interact with humans or with different devices.

The c-Walker integrates several modules and re-

lies on different types of sensors that convey informa-
tion on the surrounding environment. In particular,
the position and the velocity of human by-standers in
the environment is detected by video sensors, while
gyroscopes encoders, 3D cameras and RFID readers
are used to localise the c-Walker within a map. The
same level of complexity is on the software architec-
ture, that is comprised of modules for video-analyis,
mission planning, short term planning and control.
These services interact with a geo spatial database
that store relevant information about the environ-
ment. The geo spatial database maintains a con-
sistent description of the environment, where each
model inserts additional information layers.

The integration of this complex network of mod-
ules calls for a middleware solution striking a good
tradeoff between conflicting needs such as: modular-
ity, architecture independence, re-use, easy access to
the limited hardware resources and real–time con-
straints.

Three middleware architectures proposed in the
last years (each one with a well maintained binding
on the Linux Kernel and on the most used network
protocols) offer reliable and easy to use abstractions

1

and intuitive publish-subscribe mechanism that can
simplify the development of complex robotic appli-
cation like DALi to a good degree. The first one
is Open Data Distribution Service (OpenDDS) [9],
which implements a standard proposed by the Ob-
ject Management Group[10]. The second alternative
that we have considered is ZeroMQ [7], which imple-
ments a publish-subscribe paradigm to support con-
current programming over socket connections using
a publish-subscribe paradigm and is freely available
from its website [13]. The third middleware is Open
Real-Time Ethernet (ORTE) [12] and implements a
publish-subscribe mechanism over a real–time ether-
net connection (in particular, it is compliant with the
RTPS - Real-Time Publish-Subscribe - 1.0 protocol).
The three solutions have different reasons of interest.
OpenDDS builds on top of the decennial experience
made by the CORBA community and offers powerful
abstractions. ZeroMQ is extremely lightweight and
potentially interesting for its easy adaptation to em-
bedded architectures. ORTE is a product has been
developed for a special care for its real–time perfor-
mance.

Putting aside the different historical background
of these solutions, their compliance with the different
requirements of complex robotics application (first
and foremost real–time constraints) remains to be
tested on the field, and is the objective of this pa-
per. In particular, we evaluate the performance of
the three middlewares in terms of latency, maximum
connections, and processor utilisation. This compar-
ison is used a a cornerstone for the development of
a reliable software architecture for the cWalker and
can pave the way for the introduction of real–time
middleware in a large class of robotic applications.

The paper is organised as follow. In Section 2,
we offer an overview of our case study. In Section 3,
we shortly describe the three middleware analysed in
the paper and compare their features. In Section 4,
we report our results on the performance comparison
between the three different alternatives. In Section 5,
we state our conclusions and discuss future work di-
rections.

2 The Case–Study

An important motivational example for this work has
been offered us by a cooperative European project [3]
coordinated by the University of Trento. The objec-
tive of the project is the development of a robotic
assistant to help older adults with emerging cogni-
tive impairments navigate large and challenging en-
vironments (e.g., a shopping mall, or an airport).

Because the main focus of the project is to compen-
sate for cognitive deficiencies, the assistant is called
cWalker (cognitive walker) A simplified scheme of
the most important functionalities of the cWalker is
shown in Figure 1. The cWalker prompts the user
for a sequence of target points in the environment
that he/she wants to visit through a visual inter-
face. The Long Term Planner finds the most con-
venient path using the map of the environment and
the real–time information on the state of the place,
which is acquired querying remote sensors (e.g., the
surveillance cameras). When the users starts to move
following, the walker guides her/him along the path
using electro-actuated brakes [4], haptic interfaces
and audio/video interfaces. The guidance requires a
real–time localisation system which tracks the posi-
tion of the cWalker while it moves. Along the way,
the cWalker localises the user in the environment,
detects anomalies and the motion of people in the
surroundings and plans deviation from the planned
path when required (e.g., to avoid accidents or such
behaviours as could violate the social rules). This is
done by a Short–Term planner.

Short Term

Planner

People

Detection

Kinect
3D

Cameras

Wheel

Encoder

Localisation

Environment

Reconstruction

Inertial

Platforms
RFID

Reader

Haptics

Control
Brakes

Control

Electric

Brakes

Haptic

Interfaces

SENSORS

FUNCTIONALITIES

ACTUATORS

MAPSLong Term

Planner

Audio/Visual

Interface

Occupation

Maps

Environment

Cameras

HMI USER

FIGURE 1: Simplified functional scheme
of the DALi cWalker

A complete description of the different functionali-
ties is beyond the goals of the present paper. We
offer some additional details for a few in order to
illustrate the requirements of the middleware.

Localisation. The ability of the cWalker to localise
itself in the environment is key to most of its goals
and is used by the motion planner (both short term
and long term) and by the guidance systems (brake
control, haptic control and audio visual interfaces).
This localisation module uses a combination of a rel-
ative positioning system, which utilises encoder and
inertial sensors to track the motion of the cWalker
from a specified position, with two absolute posi-
tioning systems, which respectively utilise an RFID
reader and a 3D camera to construct a model of the
surroundings and match it with a-priori knowledge

2

of the place (e.g., the presence of landmarks). The
relative positioning system fuses the information of
two position encoders mounted on the wheels and
of two inertial platforms (embedding accelerometers
and gyroscopes). This system produces a new esti-
mate of the position every 5ms. The absolute po-
sitioning system is activated on the occurrence of
events (e.g., the presence of a RFID tag underneath
the carpet), or with a fixed periodicity (in the order
of seconds). The interested reader is referred to a
recent paper describing the system [8].

Long Term Planner. The long term planner pro-
duces a sequence of via points from a set of desired
locations, a map of the environment (coded in a GIS
database) and the occupation maps, which relate the
different location of the map with an estimate on the
density of people. This plan is produced on the acti-
vation of the system (in response to the user input)
and with a fixed periodicity during the operation of
the system (in the order of ten seconds). The long
term plan is used by the short term planner and by
the user interface.

Short term planner. The short term planner fine-
tunes the plan considering the presence of obstacles
along the way. In particular, it receives informa-
tion from a Kinect based people tracker on position
and velocity of human agents in the proximity of the
cWalker. This information is propagated ahead in
time to predict the future positions of the agents in
the horizon of a few seconds using a stochastic model
based on the social force model [6]. The planner
seeks the minimum change to the path than meets a
specification on the probability of accidents [2]. The
tracker produces a new estimate every 100ms. A new
short term plan is produced every 0.5s.

Brakes Control. The brakes control system guides
the user along the specified path by operating on the
brakes [5]. The idea is to minimise the jerk and to
leave the maximum possible level of freedom to the
user. Only when he/she deviates significantly from
the trajectory does the system come into play. In or-
der to ensure a good level of comfort and an effective
driving action the activation frequency of this com-
ponent has to be very high (in the order of 50ms).

2.1 Architectural design

The functional architecture outlined above suggests
the following considerations:

1. Many of the components are re-usable across
a wide family of applications and systems
(e.g., the localisation module and the people

tracker);

2. The computational demand and the physi-
cal constraints call for a distributed hardware
implementation, in which the functionalities
could be deployed in different nodes in different
implementations or operating conditions (e.g.,
in response to a system failure);

3. The different components require varied exper-
tise; the resulting development team is large
and heterogeneous.

Short Term

Planner

People

Detection
Localisation

Haptics

Control
Brakes

Control

Long Term

Planner

Audio/Visual

Interface

Occupation

Maps

100ms

500ms

10ms

60s

300s

FIGURE 2: Publish-Subscribe architecture
for some of DALi’s components

The adoption of a middleware infrastructure pro-
viding publish-subscribe functionalities allows us to
meet most of these requirements and decouple the
development of the different modules. We report in
Figure 2 a possible implementation scheme for the
communication between some of the modules. As an
example, the people tracker publishes a sequence of
positions and velocity of the people within the reach
of the sensors with a periodicity of 100ms and this
topic is subscribed to by the short term planner. The
localisation module publishes a new position of the
cWalker every 10ms and this information is used by
various subscribers (at least those shown in the fig-
ure). Similarly in the graph one can read the topics
published and subscribed to by other modules.

3 Publish-Subscribe Middle-

wares

As explained in Section 2, the various modules com-
posing the DALi software architecture communi-
cate according to the publish-subscribe paradigm,

3

and this functionality is provided by a middle-
ware. Since the DALi modules are characterised by
some real-time constraints to be respected, the mid-
dleware has to provide predictable communication
latencies (without compromising the throughput).
Hence, while there are several middlewares provid-
ing publish-subscribe functionalities, in this paper
we focused on those that aim at providing support
for real-time communications.

We also tried to evaluate the various middlewares
in the light of some existing standards. In particular,
we focused on the Data Distribution Service (DDS)
and the Real-Time Publish-Subscribe (RTPS) proto-
col, which are two standards published by the Object
Management Group (OMG).

The DDS specification describes two levels of in-
terfaces:

1. Data-Centric Publish-Subscribe
(DCPS), a lower layer that is targeted to-
wards the efficient delivery of the proper infor-
mation to the proper recipients. It introduce a
virtual global data space.

2. Data-Local Reconstruction Layer
(DLRL), an optional higher-level layer which
allows for a simpler integration into the ap-
plication layer. It provides an object-oriented
layer of the data

DDS keeps the wire protocol open which allows dif-
ferent vendor to have their own protocol. RTPS is
one of possible wire protocol standard for DDS.

The RTPS protocol is designed for real time com-
munication on top of unreliable and connectionless
transport protocols such as UDP. RTPS introduces
publication and subscription timing parameters and
properties to achieve some performance and reliabil-
ity goals. A publisher and subscriber are connected
via two parameters: topic, type. The topic is the
label that identifies each data flow while the type
describes the data format.

In this work, we considered three different mid-
dlewares: OpenDDS, ORTE, and ZeroMQ. While
the first one is fully compliant with the DDS stan-
dard, the second one just implements the RTPS pro-
tocol, and the third one is not compliant with any
specific standard. Hence, comparing the three mid-
dlewares allows to evaluate the cost and the benefits
of the various standards and the overhead they might
introduce.

OpenDDS is an implementation of OMG Data
DDS v1.2 and the Real-time Publish-Subscribe Wire
Protocol DDS (DDS-RTPS) v2.1. It is an open

source C++ implementation of DDS standard that
uses Adaptive Communication Environment (ACE)
to provide cross platform portability and The ACE
Orb (TAO) for its DCPS layer. OpenDDS uses
CORBA only to administer the discovery service.
OpenDDS architecture borrows from TAO’s frame-
work.

The Open Real-Time Ethernet (ORTE) is
open source implementation of OMG RTPS commu-
nication protocol v 1.0 (OMGdocument formal/06-
08-02).

ZeroMQ is an open source socket based messag-
ing library that include support for publish-subscribe
messaging pattern. It provides a set of API with
multiple language binding e.g. C, C++, python and
java.

Table 3 shows a comparison of features available
in these middlewares.

3.1 The Middleware Abstraction

Layer

Since the specific Middleware that will be used in the
DALi walker has not been decided yet (but only the
needed features have been identified), an abstraction
layer providing the needed publish-subscribe func-
tionalities has been developed. Such an abstraction
layer exports a simplified API that allow to create
publishers and subscribers, publish and receive top-
ics, etc...

In particular, the abstraction layer is written in
C++ and its API is composed by:

• A class modelling a DDS “domain” (represent-
ing the set of applications that can communi-
cate each other);

• A class modelling a Publisher. This class can
be instantiated once a domain has been de-
fined, and can publish a topic on such a do-
main;

• A class modelling a Subscriber. Similarly to
the publisher class, this class can be instanti-
ated only once a domain has been defined, and
receives messages concerning a specified topic
on such a domain.

The domain class only provide a constructor,
a destructor, and two methods to create a Pub-
lisher or a Subscriber in this domain. When cre-
ating a Publisher, it is possible to specify a name
for the topic it publishes; the Publisher class then

4

features ZeroMQ OpenDDS ORTE

Standard - DDS-RTPS v1.2 RTPS v1.17
Notification wait listener/wait listener/wait
Transport TCP TCP/UDP UDP

Message type raw buffer typed message with IDL raw / typed message with IDL
Naming service - global via DCPS layer -
Serialisation self managed DLRL layer self managed

provides a publish() method that allows to send
messages for this topic. When creating a Subscriber,
it is possible to specify the name of the topic to
subscribe to; the Subscriber class then provides a
register callback() method that allows to spec-
ify a callback to be invoked when a message for the
specified topic is received.

The C++ classes then hide all of the implemen-
tation details (and the middleware API), allowing
to write code using the publish-subscribe paradigm
without relying on a specific middleware. The ab-
straction layer currently supports the three middle-
wares considered in this paper, but extending it to
other middlewares based on the publish-subscribe
paradigm should be simple.

4 Middleware Comparison

In order to check the usability of the three con-
sidered middlewares in the DALi software architec-
ture, their performance has been compared consider-
ing both the (worst case) real-time latencies and the
(average) communication throughput. This evalua-
tion has been performed by using some test programs
implementing publish-subscribe communication, and
using a setup similar to the one described in Figure 2.
The results obtained in the two cases are consistent,
and this section reports the ones based on the simple
test programs.

In a first set of experiments, the real-time perfor-
mance of the three middlewares has been compared,
by measuring the latency between the generation of
a message (from the publisher) and its arrival to the
subscribers. Two small test programs (one for the
publisher and one for the subscribers) have been de-
veloped using the abstraction layer presented in Sec-
tion 3.1 and have been used to measure the message
latency for various configurations (changing the mes-
sage size, the number of subscribers, etc...). Using
the abstraction layer allowed to repeat the experi-
ments with ZeroMQ, OpenDDS, and ORTE without
having to write dedicated tests for each middleware.

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9 10

L
a

te
n

c
y

Number of Subscribers

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

FIGURE 3: Publisher/Subscriber latency
for small messages as a function of the num-
ber of subscribers.

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10

L
a

te
n

c
y

Number of Subscribers

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

FIGURE 4: Publisher/Subscriber latency
for large messages as a function of the number
of subscribers.

Figures 3 and 4 present the measured pub-
lisher/subscriber latency (the delay between the gen-
eration of a message and its arrival to subscribers)
measured for small messages (payload of 50 bytes)
and large messages (payload of 1500 bytes) and a
number of subscribers ranging from 1 to 10. Notice
that the figures present both the average latency and
the worst-case latency measured over 100000 sam-
ples (which is probably more interesting to evaluate

5

the real-time performance of the middleware). No-
tice that while the average latency does not show a
strong dependence from the number of subscribers,
the worst-case latency is more affected by this pa-
rameter. In particular, the worst-case latency for
OpenDDS shows a noticeable increase (almost lin-
ear), while the worst-case latency for ORTE increases
less dramatically for small numbers of subscribers,
showing larger increasesonly for more than 7 or 8
subscribers. On the other hand, ZeroMQ performs
worse than ORTE when there are few subscribers,
but seems to scale better.

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

L
a

te
n

c
y

Message Size

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

FIGURE 5: Publisher/Subscriber latency
for 2 subscribers a function of the message
size.

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

L
a

te
n

c
y

Message Size

Orte, average
OpenDDS, average

ZeroMQ, average
Orte, max

OpenDDS, max
ZeroMQ, max

FIGURE 6: Publisher/Subscriber latency
for 10 subscribers as a function of the mes-
sage size.

Figures 5 and 6 show how the measured latency de-
pends on the message size, when there are few sub-
scribers (2) or a larger number of subscribers (10).

The next set of experiments compared the maxi-
mum throughput that can be achieved using the var-
ious middlewares. This throughput has been mea-
sured by measuring the minimum amount of time

needed by a subscriber to receive 10000 messages,
with a publisher generating messages at the maxi-
mum possible rate that does not cause losses.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Message Size (bytes)

Orte
OpenDDS
OpenDDS

FIGURE 7: Publisher/Subscriber through-
put as a function of the message size.

Figure 7 shows the maximum throughput measured
with the various middlewares, as a function of the
message size.

Notice that since producer and consumers exe-
cuted on the same machine, the loopback network
device has been used for communication, hence the
throughput is quite high. ZeroMQ performs better
than the other 2 middlewares, but all of the middle-
wares can achieve a throughput larger than 10Mbps,
and are thus suitable for being used in the DALi ar-
chitecture.

Based on the results of the experiments reported
above, ORTE seems to offer the best tradeoff be-
tween expressive power of the supported abstraction,
latency and throughput.

5 Conclusions

Robotic applications are one of the most promising
areas of innovation for the application of Informa-
tion and Communication Technologies. Their in-
creasing complexity, the integration of third party
components and the involvement of teams with het-
erogeneous expertise requires middleware infrastruc-
ture to speed up the development time and facilitate
re-use. One of the most important requirements that
a middleware for robotic applications must satisfy
is the ability to support real–time computation and
communication. We have tested three middlewares
available of the shelf to identify the solution that
best suits the needs of robotic applications, with a
particular focus on the real–time requirements. The
experimental set-up was designed taking inspiration

6

from an existing robotic application that our group
is developing. Based on our result, ORTE seems to
strike an adequate tradeoff between the conflicting
requirements of robotic applications.

The goals of our future investigations are man-
ifold. One of the most important is to extend the
analysis to other middleware solutions explicitly de-
veloped for robot applications such as ROS [11] and
OROCOS [1].

References

[1] Herman Bruyninckx. Open robot control soft-
ware: the orocos project. In Robotics and Au-
tomation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 3, pages
2523–2528. IEEE, 2001.

[2] Alessio Colombo, Daniele Fontanelli, Axel
Legay, Luigi Palopoli, and Sean Sedwards. Mo-
tion planning in crowds using statistical model
checking to enhance the social force model. In
Decision and Control (cdc2013), 2013 Proc. of
53nd IEEE Conference on, Firenze, Italy, Dec.
2013.

[3] http://www.ict-dali.eu. Website.

[4] D. Fontanelli, A. Giannitrapani, L. Palopoli,
and D. Prattichizzo. Unicycle steering by
brakes: a passive guidance support for an assis-
tive cart. In 2013 IEEE 52st Conference on De-
cision and Control (CDC), Florence, Italy, 2013.

[5] Daniele Fontanelli, Antonello Giannitrapani,
Luigi Palopoli, and Domenico Prattichizzo. Uni-
cycle steering by brakes: a passive guidance sup-

port for an assistive cart. In Decision and Con-
trol (cdc2013), 2013 Proc. of 53nd IEEE Con-
ference on, Firenze, Italy, Dec. 2013.

[6] Dirk Helbing and Peter Molnar. Social force
model for pedestrian dynamics. Physical review
E, 51(5):4282, 1995.

[7] Pieter Hintjens. ZeroMQ: Messaging for Many
Applications. O’Reilly, 2013.

[8] Payam Nazemzadeh, Daniele Fontanelli, David
Macii, Tizar Rizano, and Luigi Palopoli. De-
sign and performance analysis of an indoor po-
sition tracking technique for smart rollators. In
Proc. of 4th International Conference on In-
door Positioning and Indoor Navigation, IPIN
2013, Monbeliard, Belfrot, France, October
2013. IEEE.

[9] http://www.opendds.org. Website.

[10] OMG. Data distribution service for real-time
systems – version 1.2. Technical report, The
Object Management Group, 2007.

[11] Morgan Quigley, Ken Conley, Brian Gerkey,
Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-
source robot operating system. In ICRA work-
shop on open source software, volume 3, 2009.

[12] Petr Smolik, Zdenek Sebek, and Zdenek Hanza-
lek. Orte–open source implementation of real-
time publish-subscribe protocol. In Proc. 2nd
International Workshop on Real-Time LANs in
the Internet Age, pages 68–72, 2003.

[13] http://zeromq.org. Website.

7

